Continuity with ganglionic eminence modulates interkinetic nuclear migration in the neocortical pseudostratified ventricular epithelium.
نویسندگان
چکیده
Cells of the pseudostratified ventricular epithelium (PVE) undergo interkinetic nuclear migration whereby position of cell soma with nucleus is systematically dependent upon cell cycle phase. We examined if the interkinetic nuclear migration in the neopallial PVE is influenced by tissue continuity with the ganglionic eminence (GE) of the basal forebrain in explants from embryonic day 13 mice. We found that when continuity between the neopallial wall and the GE is intact, some neopallial PVE cells discontinue interkinetic nuclear migration following S-phase and upon entry into G2-phase. The somata and nuclei of those cells shift outward from the S-phase zone toward the subventricular and the intermediate zones. The outward migration of post-S-phase cells is observed only in the lateral region of the cerebral wall, which is closely adjacent to the GE, but not in the medial region, and only when tissue continuity with GE is maintained. We suggest that the outward moving PVE cells seed the secondary proliferative population (SPP) and that exit of the SPP seeding cells occurs in G2-phase. The phenomenon recapitulates similar migratory behavior of neopallial PVE cells in vivo and appears to represent a "choice" between two opposing options available to post-S-phase cells of the PVE. The choice appears to be imposed by mechanisms dependent upon continuity with the GE. We conclude that GE, and/or other adjacent basal forebrain structures, modulates interkinetic nuclear migration in the neopallial PVE.
منابع مشابه
Interkinetic nuclear migration generates and opposes ventricular-zone crowding: insight into tissue mechanics
The neuroepithelium (NE) or ventricular zone (VZ), from which multiple types of brain cells arise, is pseudostratified. In the NE/VZ, neural progenitor cells are elongated along the apicobasal axis, and their nuclei assume different apicobasal positions. These nuclei move in a cell cycle-dependent manner, i.e., apicalward during G2 phase and basalward during G1 phase, a process called interkine...
متن کاملInterkinetic and migratory behavior of a cohort of neocortical neurons arising in the early embryonic murine cerebral wall.
Neocortical neuronogenesis occurs in the pseudostratified ventricular epithelium (PVE) where nuclei of proliferative cells undergo interkinetic nuclear movement. A fraction of daughter cells exits the cell cycle as neurons (the quiescent, or Q, fraction), whereas a complementary fraction remains in the cell cycle (the proliferative, or P, fraction). By means of sequential thymidine and bromodeo...
متن کاملFerret–mouse differences in interkinetic nuclear migration and cellular densification in the neocortical ventricular zone
The thick outer subventricular zone (OSVZ) is characteristic of the development of human neocortex. How this region originates from the ventricular zone (VZ) is largely unknown. Recently, we showed that over-proliferation-induced acute nuclear densification and thickening of the VZ in neocortical walls of mice, which lack an OSVZ, causes reactive delamination of undifferentiated progenitors and...
متن کاملHeterogeneity, Cell Biology and Tissue Mechanics of Pseudostratified Epithelia: Coordination of Cell Divisions and Growth in Tightly Packed Tissues.
Pseudostratified epithelia (PSE) are tightly packed proliferative tissues that are important precursors of the development of diverse organs in a plethora of species, invertebrate and vertebrate. PSE consist of elongated epithelial cells that are attached to the apical and basal side of the tissue. The nuclei of these cells undergo interkinetic nuclear migration (IKNM) which leads to all mitoti...
متن کاملApical movement during interkinetic nuclear migration is a two-step process.
Neural progenitor cells in the pseudostratified neuroepithelium in vertebrates undergo interkinetic nuclear migration, which results in mitotic cells localized to the apical surface. Interphase nuclei are distributed throughout the rest of the epithelium. How mitosis is coordinated with nuclear movement is unknown, and the mechanism by which the nucleus migrates apically is controversial. Using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental neurology
دوره 169 2 شماره
صفحات -
تاریخ انتشار 2001